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Abstract
We consider the self-adjoint extensions (SAE) of the symmetric supercharges
and Hamiltonian for a model of SUSY quantum mechanics in R

+ with a singular
superpotential. We show that only for two particular SAE, whose domains are
scale invariant, the algebra of N = 2 SUSY is realized, one with manifest
SUSY and the other with spontaneously broken SUSY. Otherwise, only the
N = 1 SUSY algebra is obtained, with spontaneously broken SUSY and
non-degenerate energy spectrum.

PACS numbers: 11.30.Pb, 03.65.Db, 02.30.Tb, 02.30.Sa
Mathematics Subject Classification: 81Q10, 34L40, 34L05

1. Introduction

Supersymmetry (SUSY) [1–6, 8–11] gives desirable features to quantum field theories, such
as an improved ultraviolet behaviour, but also predicts superpartner states with degenerate
mass which are not observed experimentally. Therefore, this symmetry is expected to be
spontaneously (dynamically) broken.

Several schemes have been developed to try to solve the SUSY breaking problem,
including the idea of non-perturbative breaking by instantons. In this context, the simplest
case of SUSY quantum mechanics (SUSYQM) was introduced by Witten [8] and Cooper and
Freedman [10].

When considering these models, several authors have suggested that singular potentials
could break SUSY through nonstandard mechanisms, being responsible for non-degeneracy
of energy levels and negative energy eigenstates [12–17].

In particular, Jevicki and Rodrigues [12] have considered the singular superpotential
W(x) = g/x −x. Based on the square integrable solutions of a differential operator related to
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the Hamiltonian of this system [18] they concluded that, for a certain range of the parameter
g, SUSY is broken with a negative energy ground state.

However, they have not considered if all these functions correspond to eigenvectors of
a unique self-adjoint Hamiltonian. As is well known, the quantum dynamics is given by a
unitary group, and it follows from Stone’s theorem [19] that the Hamiltonian, which is the
infinitesimal generator of this group, must be self-adjoint.

Later, Das and Pernice [20] have reconsidered this problem in the framework of a
SUSY preserving regularization of the singular superpotential, finding that SUSY is recovered
manifestly at the end, when the regularization is removed. They conclude that SUSY is robust
at short distances (high energies), and the singularities that occur in quantum-mechanical
models are unlikely to break SUSY.

In the present paper, we would like to address this controversial subject by studying the
self-adjoint extensions of the Hamiltonian defined by the singular superpotential W(x) =
g/x − x with x ∈ R

+. This will be done by studying the self-adjoint extensions of the
symmetric supercharges, and by considering the possibility of realizing the algebra of SUSY
in a dense subspace of the Hilbert space.

We will show that there is a range of values of g for which the supercharges admit a
one-parameter family of self-adjoint extensions, corresponding to a one-parameter family
of self-adjoint extensions of the Hamiltonian. We will show that only for two particular
self-adjoint extensions, whose domains are scale invariant, the algebra of N = 2 SUSY can
be realized, one with manifest SUSY and the other with spontaneously broken SUSY. For
other values of this continuous parameter, only the N = 1 SUSY algebra is obtained, with
spontaneously broken SUSY and non-degenerate energy spectrum.

We should mention that self-adjoint extensions of supercharges and Hamiltonian for the
SUSYQM of the free particle with a point singularity in the line and the circle have been
considered in [21–24], where N = 1, 2 realizations of SUSY are described. They have also
been considered in the framework of the Landau Hamiltonian for two-dimensional particles
in nontrivial topologies in [25] (see also [26]).

Let us remark that, given a superpotential W(x), one gets a formal expression for
the Hamiltonian (and also for the supercharges) as a symmetric differential operator H
defined on a subspace of sufficiently smooth square-integrable functions. The theory of
deficiency indices of von Neumann [19] gives the basic criterion for the existence of
self-adjoint extensions of this operator. In the case where there is only one self-adjoint
extension, H is essentially self-adjoint and its closure [19] represents the true Hamiltonian
of the system. But if there are several self-adjoint extensions of H, they usually differ by
the physics they describe. In this case, the selection of a Hamiltonian among the self-
adjoint extensions of H is not just a mathematical technicality. Rather, additional physical
information is required to select the correct one, which describes the true properties of the
system.

The structure of the paper is as follows: in the next section we present the problem
to solve. In section 3 we study the adjoint operator of the supercharge, whose properties
are needed to determine the supercharge self-adjoint extensions. This is done in section 4,
where the self-adjoint extensions of the Hamiltonian are also determined. In section 5 we
consider the possibility of realizing the algebra of the supersymmetry on the Hamiltonian
domain of definition, and state our conclusions. In appendix A we treat some technicalities
related to the closure of the symmetric supercharge and in appendix B we consider the graded
partition function and the Witten index of the Hamiltonian, and the spectral asymmetry of the
supercharge.
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2. Setting of the problem

The Hamiltonian of a supersymmetric one-dimensional system can be written as

H = {Q, Q̃}+, (2.1)

where the supercharges

Q =
(

0 0
A 0

)
, Q̃ =

(
0 Ã

0 0

)
(2.2)

are nilpotent operators,

Q2 = Q̃2 = 0, (2.3)

which commute with the Hamiltonian.
In equation (2.2),

A = 1√
2

(
− d

dx
+ W(x)

)
and Ã = 1√

2

(
d

dx
+ W(x)

)
(2.4)

are differential operators defined on a suitable dense subspace of functions where the necessary
compositions of operators in equations (2.1) and (2.3) are well defined, and W(x) is the
superpotential.

In this section we will consider a quantum-mechanical system living in the half-line R+,
subject to a superpotential given by

W(x) = g

x
− x (2.5)

for x > 0 and g real. The two differential operators defined in (2.4) take the form

A = 1√
2

(
− d

dx
+

g

x
− x

)
, (2.6)

Ã = 1√
2

(
d

dx
+

g

x
− x

)
. (2.7)

Let us now introduce an operator Q+, defined on the dense subspace of (two component)
functions with continuous derivatives of all order and compact support not containing the
origin, D(Q+) = C∞

0 (R+\{0}), over which its action is given by

Q+� =
(

0 Ã

A 0

)(
ψ1

ψ2

)
. (2.8)

Note that, within this domain, Q+ can be identified with

Q+ = Q̃ + Q, (2.9)

while its square (which is well defined) satisfies

Q2
+ = {Q, Q̃}+ = H =

(
H+ 0
0 H−

)
, (2.10)

where H is the Hamiltonian of the system, with H+ = Ã A and H− = AÃ .
It can easily be verified that Q+ so defined is a symmetric operator, but it is neither

self-adjoint nor even closed. Consequently, we must look for the self-adjoint extensions
of Q+.

Within the same domain, a linearly independent combination of supercharges leads to the
operator

Q− = i(Q̃ − Q), (2.11)



4668 H Falomir and P A G Pisani

which is also symmetric and satisfies that Q2
− = H , and {Q+,Q−}+ = 0. Since it can be

obtained from Q+ through a unitary transformation given by

Q− = eiσ3π/4Q+ e−iσ3π/4, with σ3 =
(

1 0
0 −1

)
, (2.12)

the following analysis will be carried out only for Q+, and it will extend immediately to Q−.
Note that, given a self-adjoint extension of Q+ (which, in particular, is a closed and

densely defined operator [19]), its square gives the corresponding self-adjoint extension of the
Hamiltonian H in equation (2.10), by virtue of a theorem due to von Neumann1.

The first step in the construction of the self-adjoint extensions of Q+ consists in the
determination of its adjoint, Q

†
+, which will be done in the next section.

3. The adjoint operator Q†
+

In this section we will determine the domain of definition of Q
†
+, and its spectrum. In particular,

we are interested in the deficiency subspaces [19] of Q+ (the null subspaces of (Q
†
+ ∓ i)),

K± := Ker
(
Q†

+ ∓ i
)
, (3.1)

which determine the self-adjoint extensions of Q+.

3.1. Domain of Q
†
+

A (two-component) function � belongs to the domain of Q
†
+,

� =
(

φ1

φ2

)
∈ D

(
Q†

+

) ⊂ L2(R
+), (3.2)

if (�,Q+�) is a linear continuous functional of �, for � ∈ D(Q+). This requires the
existence of a function

� =
(

χ1

χ2

)
∈ L2(R

+) (3.3)

such that

(�,Q+�) = (�,�), ∀ � ∈ D(Q+). (3.4)

Such � is uniquely determined, since D(Q+) is a dense subspace. Then, for each � ∈ D
(
Q

†
+

)
,

the action of Q
†
+ is defined by Q

†
+� := �. Note that D(Q+) ⊂ D

(
Q

†
+

)
, since Q+ is symmetric.

We will now determine the properties of the functions in D
(
Q

†
+

)
, and the way Q

†
+ acts on

them. In a distributional sense, equation (3.4) implies that

−φ′
1 +

(g

x
− x

)
φ1 =

√
2χ2, (3.5)

φ′
2 +

(g

x
− x

)
φ2 =

√
2χ1, (3.6)

which shows that �′(x) is a regular (locally integrable) distribution. This implies that �(x) is
an absolutely continuous function for x > 0.

Therefore, the domain of Q
†
+ consists of those (square-integrable) absolutely continuous

functions such that the left-hand sides in equations (3.5) and (3.6) are also square-integrable
functions on the half-line:

D
(
Q†

+

) = {� ∈ AC(R+\{0}) ∩ L2(R
+) : Aφ1, Ã φ2 ∈ L2(R

+)}. (3.7)

1 See theorem X.25 on page 180 of [19].
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Consequently, an integration by parts on the left-hand side of equation (3.4) is justified, and we
conclude that the action of Q

†
+ on � ∈ D

(
Q

†
+

)
also reduces to the application of the differential

operator

Q†
+� =

(
0 Ã

A 0

)(
φ1

φ2

)
. (3.8)

3.2. Spectrum of Q
†
+

We now consider the eigenvalue problem for Q
†
+,

Q†
+�λ = λ�λ, (3.9)

or equivalently

Aφ1 = λφ2, Ã φ2 = λφ1, (3.10)

with

�λ =
(

φ1

φ2

)
∈ D

(
Q†

+

)
(3.11)

and λ ∈ C.
From equations (2.6), (2.7) and (3.10), it follows immediately that �′

λ(x) is an absolutely
continuous function. In fact, the successive applications of Q

†
+ on both sides of equation (3.9)

show that �λ(x) ∈ C∞(R+\{0}), and equation (3.10) is just a system of ordinary differential
equations.

Replacing φ2 in terms of φ1 we get

− 1

2
φ′′

1 +
1

2

{
g(g − 1)

x2
+ x2 − 1 − 2g

}
φ1 = λ2φ1, (3.12)

λφ2 = 1√
2

{
−φ′

1 +
(g

x
− x

)
φ1

}
. (3.13)

Making the substitution

φ1(x) = xg e−x2/2F(x2) (3.14)

in equation (3.12) we get the Kummer equation [27] for F(z),

zF ′′(z) + (b − z)F ′(z) − aF(z) = 0, (3.15)

with

a = −λ2

2
, b = g +

1

2
. (3.16)

For any values of the parameters a and b, equation (3.15) has two linearly independent
solutions [27] given by the Kummer function

y1(z) = U(a, b, z) = π

sin πb

{
M(a, b, z)


(1 + a − b)
(b)
− z1−b M(1 + a − b, 2 − b, z)


(a)
(2 − b)

}
, (3.17)

and

y2(z) = ezU(b − a, b,−z). (3.18)

In equation (3.17), M(a, b, z) = 1F1(a; b; z) is the confluent hypergeometric function.
Since for large values of the argument [27]

U(a, b, z) = z−a{1 + O(|z|−1)}, (3.19)
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only y1(x
2) leads to a function φ1(x) ∈ L2(1,∞) when replaced in equation (3.14), while

y2(x
2) should be discarded.
Therefore, we get

φ1(x) = xg e−x2/2U

(
−λ2

2
, g +

1

2
, x2

)
. (3.20)

On the other hand, replacing equation (3.20) in equation (3.13), it is straightforward to show
that [27]

φ2(x) = − λ√
2
xg+1 e−x2/2U

(
1 − λ2

2
; g +

3

2
, x2

)
, (3.21)

which is also in L2(1,∞).
In order to determine the spectrum of Q

†
+, we must now consider the behaviour of

�λ(x) = (
φ1(x)

φ2(x)

)
near the origin. From equation (3.17), and the small argument expansion of

Kummer’s functions (see [27], p 508), one can straightforwardly show that three cases should
be distinguished, according to the values of the coupling g:

• If {g � 1/2}, it can be seen that �λ(x) /∈ L2(0, 1) unless −λ2/2 = −n, with
n = 0, 1, 2, . . . . In this case, taking into account that U(−n, b, z) reduces to a Laguerre
polynomial (of degree n in z),

U(−n, b, z) = (−1)nn!L(b−1)
n (z), (3.22)

we have φ1(x) ∼ xg and φ2(x) ∼ xg+1 for 0 < x 
 1. (Note that the square-integrability
of φ1(x) and φ2(x) on R

+ is guaranteed by the decreasing exponentials in equations (3.20)
and (3.21).) Therefore, in this region Q

†
+ has a symmetric real spectrum given by the

(degeneracy one) eigenvalues

λ0 = 0, λ±,n = ±
√

2n, n = 1, 2, 3, . . . (3.23)

corresponding to the eigenfunctions

�0 = xg e−x2/2

(
1
0

)
, (3.24)

and

�±,n = (−1)nn!xg e−x2/2

 L
(g− 1

2 )
n (x2)

∓ x√
n
L

(g+ 1
2 )

n−1 (x2)

 (3.25)

respectively.
• For {−1/2 < g < 1/2}, it can be seen from (3.20), (3.21) and (3.17) that �λ(x) ∈

L2(0, 1),∀λ ∈ C. This means that, for these values of g, every complex number
is an eigenvalue of Q

†
+ with degeneracy one. For example, the eigenfunction of Q

†
+

corresponding to λ = i is given by

�λ=i(x) = �+(x) =
(

φ+,1

φ+,2

)
= xg e−x2/2

(
U

(
1
2 , g + 1

2 , x2
)

− i√
2
xU

(
3
2 , g + 3

2 , x2
)) , (3.26)

while the eigenfunction corresponding to λ = −i is given by its complex conjugate,

�λ=−i(x) = �−(x) = �+(x)∗ (3.27)

(since the coefficients in the differential operators in equation (3.10) are real).
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• Finally, for g � −1/2, it can be seen that �λ(x) /∈ L2(0, 1) unless −λ2/2 = g − 1
2 − n,

with n = 0, 1, 2, . . . . In this case, taking into account the Kummer transformation (see
[27], p 505),

U(1 − n − b, 2 − b, z) = zb−1U(−n, b, z), (3.28)

and equation (3.22), we have φ1(x) ∼ x1−g and φ2(x) ∼ x−g for 0 < x 
 1. Therefore,
in this region Q

†
+ has a symmetric real spectrum given by the (degeneracy one) eigenvalues

λ±,n = ±
√

2n + 1 − 2g, n = 0, 1, 2, . . . (3.29)

corresponding to the eigenfunctions

�±,n = (−1)nn! × x−g e−x2/2

 xL
( 1

2 −g)
n (x2)

∓
√

n + 1
2 − gL

(−g− 1
2 )

n (x2)

 . (3.30)

Note that no eigenvalue vanishes for these values of the coupling.

These results will be employed in the next section to determine the self-adjoint extensions
of Q+.

4. Self-adjoint extensions of Q+

According to von Neumann’s theory [19], to construct the self-adjoint extensions of Q+ we
must take into account the different behaviours of Q

†
+, described in the previous section.

4.1. For |g| � 1/2 the operator Q+ is essentially self-adjoint

As seen in section 3.2, the deficiency indices [19] of Q+, defined as the dimensions of the
deficiency subspaces K±,

n± := dim Ker
(
Q†

+ ∓ i
)
, (4.1)

vanish for |g| � 1/2. This means that Q+ is essentially self-adjoint [19] in these regions of
the coupling, admitting there a unique self-adjoint extension given by Q

†
+ (which, in this case,

is itself a self-adjoint operator).
The corresponding self-adjoint extension of the Hamiltonian in equation (2.10) is given

by (see footnote 1)

H = (
Q†

+

)2
, (4.2)

where the operator composition on the right-hand side is possible in the dense domain

D(H) = {
ψ ∈ D

(
Q†

+

)
: Q†

+ψ ∈ D
(
Q†

+

)}
. (4.3)

Note that every eigenfunction of Q
†
+, corresponding to an eigenvalue λ, belongs to D(H).

Therefore, it is also an eigenfunction of H with eigenvalue E = λ2. So, we have:

• For g � 1/2, the eigenfunctions of H are given in equations (3.24) and (3.25). Note that
there is a unique zero mode, while the positive eigenvalues of H ,

En = 2n, n = 1, 2, 3, . . . (4.4)

are doubly degenerate (see equation (3.23)). One can add and subtract the corresponding
eigenfunctions in equation (3.25) to get bosonic and fermionic states (with only the upper
and lower components non-vanishing respectively). For these values of the coupling, the
Witten index is � = 1 and the SUSY is manifest [8].



4672 H Falomir and P A G Pisani

• For g � −1/2, the eigenfunctions of H are given in equation (3.30). Note that there is
no zero mode. Once again, the positive eigenvalues of H ,

En = 2n + 1 − 2g � 2, n = 0, 1, 2, . . . (4.5)

are doubly degenerate (see equation (3.29)), and the eigenfunctions can be combined
to get bosonic and fermionic states. For these values of g, the SUSY is spontaneously
broken and the Witten index is � = 0 [8].

4.2. For |g| < 1/2 the operator Q+ is not essentially self-adjoint

On the other hand, according to equations (3.26) and (3.27) in section 3.2, for −1/2 < g < 1/2
the deficiency indices are n± = 1. In this region Q+ admits a one-parameter family of self-
adjoint extensions, Q

γ
+ , which are in a one-to-one correspondence with the isometries from

K+ onto K− [19], characterized by

U(γ )�+(x) := e2iγ �−, γ ∈ [0, π), (4.6)

with �+ and �− given in equations (3.26) and (3.27) respectively.
The self-adjoint operator Q

γ
+ is the restriction of Q

†
+ to a dense subspace

D
(
Q

γ
+

) ⊂ D
(
Q†

+

) = D(Q+) ⊕ K+ ⊕ K− (4.7)

(here Q+ is the closure of Q+ [19]), composed by those functions which can be written as

� =
(

φ1

φ2

)
= �0 + c

(
�+ + e2iγ �−

)
, (4.8)

with �0 =
(

φ0,1

φ0,2

)
∈ D(Q+), and the constant c ∈ C.

Obviously, we have

Q
γ
+� = Q†

+�0 + ic(�+ − e2iγ �−), (4.9)

with Q
†
+ given in equation (3.8).

Equation (4.8) completely characterizes the behaviour near the origin of the functions
� ∈ D

(
Q

γ
+

)
. As we will see, it also allows us to determine the spectrum of Q

γ
+ .

Indeed, in appendix A we have worked out the domain of the closure of Q+,D(Q+),
showing that

φ0,1(x) = o(xg), φ0,2(x) = o(x−g), (4.10)

for x → 0+. On the other side, from equations (3.11), (3.20), (3.21) and (3.17), one can easily
see that the components of any eigenfunction �λ of Q

†
+ behave as

φ1(x) = 

(

1
2 − g

)


(

1−λ2

2 − g
)xg + O(x1−g), φ2(x) =

√
2

λ



(

1
2 + g

)


( − λ2

2

)x−g + O(x1+g). (4.11)

Therefore, no eigenfunction of Q
†
+ belongs to D(Q+).

Consequently, it is the contributions of �± in equation (4.8) which determine the spectrum
of Q

γ
+ . In fact, consider the limit

lim
x→0+

x−gφ1(x)

xgφ2(x)
= λ√

2



(− λ2

2

)


(

1−λ2

2 − g
) 


(
1
2 − g

)


(

1
2 + g

) . (4.12)

For a non-vanishing c on the right-hand side of equation (4.8), this limit must coincide with

lim
x→0+

Re{e−iγ x−gφ+,1(x)}
Re{e−iγ xgφ+,2(x)} = −

√
π

2

cot(γ )


(1 − g)



(

1
2 − g

)


(

1
2 + g

) , (4.13)
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-2 -1 0 1 2

-2

-1

0

1

2

Figure 1. f (λ) :=
λ


(
− λ2

2

)


(

1−λ2
2 −g

) for g = 1/4, and β(γ ) ≡ −1.

where equations (3.27) and (4.11) with λ → i have been taken into account. Then, the
eigenvalues of Q

γ
+ (which are real) are the solutions of the transcendental equation

f (λ) := λ

(− λ2

2

)


(

1−λ2

2 − g
) = −

√
π cot(γ )


(1 − g)
=: β(γ ). (4.14)

Note that f (λ) is an odd function of λ, and −∞ � β(γ ) < ∞ for 0 � γ < π .
The function f (λ) on the left-hand side of equation (4.14) has been plotted in figure 1, for

a value of the coupling g = 1/4. The eigenvalues of Q
γ
+ are determined by the intersections

of the graphic of f (λ) with the horizontal line corresponding to the constant β(γ ) (taken
equal to −1 in the figure). As stressed in section 3.2, the eigenvalues are non-degenerate.
The eigenfunctions are obtained by replacing these eigenvalues in equations (3.11), (3.20)
and (3.21).

It can easily be seen that, in general, the spectrum is non-symmetric with respect to the
origin. The exceptions are the self-adjoint extensions corresponding to γ = 0 (β = −∞) and
γ = π/2 (β = 0). Indeed, the condition f (−λ) = f (λ) for a non-vanishing λ requires that

1



(− λ2

2

)


(

1−λ2

2 − g
) = 0, (4.15)

whose solutions (see figure 1) correspond to the intersections with the constant β = −∞,

− λ2

2
= −n ⇒ λ±,n = ±

√
2n, n = 1, 2, 3, . . . (4.16)

or the constant β = 0,

1 − λ2

2
− g = −n ⇒ λ±,n = ±

√
2n + 1 − 2g, n = 0, 1, 2, . . . . (4.17)

In particular, Qγ=0
+ is the only self-adjoint extension having a zero mode. For 0 < γ < π ,

the eigenvalues are contained between contiguous asymptotes of 

(− λ2

2

)
,

√
2n < |λ±,n| <

√
2(n + 1). (4.18)

Now, for a given Q
γ
+ , with γ ∈ [0, π), we get the self-adjoint extension of the Hamiltonian

defined by (see footnote 1)

Hγ = (
Q

γ
+

)2 ≡ (
Q†

+

)2∣∣
D(Hγ )

, (4.19)
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where the operator composition on the right-hand side is the restriction of
(
Q

†
+

)2
to the dense

subspace

D(Hγ ) = {
ψ ∈ D

(
Q

γ
+

)
: Q†

+ψ ∈ D
(
Q

γ
+

)}
. (4.20)

This domain includes, in particular, all the eigenfunctions of Q
γ
+ , which are then also

eigenvectors of Hγ :

Q
γ
+�λ = λ�λ ⇒ Hγ �λ = λ2�λ. (4.21)

Note that, except for the special values γ = 0, π/2, the spectrum of Hγ is non-degenerate.
Three cases can be distinguished:

• For γ = 0 (β = −∞) we get the only self-adjoint extension of H having a
(non-degenerate) zero mode. The corresponding eigenfunction is also given by
equation (3.24). From equation (4.16), it follows that the non-vanishing eigenvalues
of Hγ=0 are doubly degenerate,

E±,n = (λ±,n)
2 = 2n, n = 1, 2, 3, . . . . (4.22)

We can take linear combinations of the corresponding eigenfunctions, �±,n (given by
equation (3.25), with |g| < 1/2), to get linearly independent states with only one non-
vanishing component.

Therefore, the conditions imposed on the functions inD
(
Q

γ=0
+

)
by equation (4.8) with

γ = 0 give rise to a manifestly supersymmetric self-adjoint extension of the Hamiltonian
H. The Witten index is in this case � = 1.

• For γ = π/2 (β = 0) we get a self-adjoint extension of H with no zero modes, and a
doubly degenerate spectrum. Indeed, from equation (4.17) it follows that the self-energies
of Hγ=π/2 are

E±,n = (λ±,n)
2 = 2n + 1 − 2g, n = 0, 1, 2, . . . . (4.23)

These eigenvalues are positive, since 1 − 2g > 0. The eigenfunctions �±,n, whose
expressions are given by equation (3.30) with |g| < 1/2, can be combined to get bosonic
and fermionic states.

In the present case, the conditions imposed on the functions in D
(
Q

γ=π/2
+

)
by

equation (4.8) with γ = π/2 break the SUSY, preserving the degeneracy of the spectrum.
This gives a Witten index � = 0.

• For γ �= 0, π/2 we get self-adjoint extensions of H with no zero modes and non-degenerate
spectra. The eigenvalues of Hγ (the square of those λ solutions of equation (4.14)) are all
positive, and the corresponding eigenfunctions are neither bosonic nor fermionic states.
(See equations (3.20) and (3.21).)

In this case, the condition imposed in equation (4.8) to select the domain of Q
γ
+

breaks not only the SUSY, but also the degeneracy of the spectrum. The Witten index is
� = 0.

The analysis performed in this section should be compared with the results obtained in
[20], where even and odd solutions for a regularized version of this superpotential are worked
out, obtaining in the limit eigenfunctions belonging to the domains of two different self-adjoint
Hamiltonians, those corresponding to γ = 0 and γ = π/2.
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4.3. The g = 0 case

It is instructive to consider the g = 0 case, in which the superpotential (equation (2.5)) is
regular at the origin, and the functions in D

(
Q

γ
+

)
approach constants for x → 0+.

Indeed, if g = 0, we have for the functions on the right-hand side of equation (4.8) (see
equations (A.6) and (4.11))

�0(x) = o(x0), �+(x) + e2iγ �−(x) = 23/2 eiγ

(√
π
2 cos γ

−sin γ

)
+ O(x). (4.24)

Therefore, the domain of Q
γ
+ can be characterized simply by a local boundary condition

of the form

� ∈ D
(
Q

γ
+

) ⇒ (
sin γ

√
π
2 cos γ

) (φ1(0)

φ2(0)

)
= 0. (4.25)

The particular values γ = 0 and γ = π/2 imply to demand φ2(0) = 0 and φ1(0) = 0,
respectively.

As discussed in section 4.2, for γ = 0 the SUSY is manifest: there is a zero mode of
Hγ=0,

�0 =
(

e−x2/2

0

)
, (4.26)

and the eigenfunctions corresponding to the (doubly degenerate) non-vanishing eigenvalues,
E±,n = 2n, n = 1, 2, . . . , reduce to (see equations (4.22) and (3.25))

�±,n(x) = e−x2/2

22n

(
H2n(x)

±2
√

nH2n−1(x)

)
, (4.27)

where Hn(x) are the Hermite polynomials. Note that the lower component and the first
derivative of the upper component of the eigenvectors vanish at the origin.

For γ = π/2, the SUSY is spontaneously broken: there are no zero modes, and the
eigenfunctions of Hγ=π/2 corresponding to the (doubly degenerate) non-vanishing eigenvalues,
E±,n = 2n + 1, n = 0, 1, . . . , reduce to (see equations (4.23) and (3.30))

�±,n(x) = e−x2/2

22n+1

(
H2n+1(x)

∓√
4n + 2H2n(x)

)
. (4.28)

In this case, the upper component and the first derivative of the lower component of the
eigenvectors vanish at the origin.

For other values of the parameter γ , the SUSY is also broken: there are no zero modes
and the spectrum is non-degenerate, as previously discussed.

Therefore, we see that all except one of the possible local boundary conditions at the
origin defining a self-adjoint supercharge Q

γ
+ (and a self-adjoint Hamiltonian Hγ ), equation

(4.25), break the SUSY.
This should be compared with the results obtained in [20] for the super half-oscillator,

where the regularization employed for the superpotential automatically leads to the eigenvalues
and eigenfunctions corresponding to the γ = 0 case, equations (4.26) and (4.27), for which
SUSY is manifest.

5. Discussion

In the previous sections, we have seen how to choose suitable domains to define self-adjoint
extensions of the supercharge Q+, initially defined in the restricted domain C∞

0 (R+\{0}) as in
equations (2.8), (2.6) and (2.7).



4676 H Falomir and P A G Pisani

As stressed in section 2, Q+ and Q− are related by a unitary transformation (see
equation (2.12)). Then, each self-adjoint extension of the first, Q

γ
+ , determines a self-adjoint

extension of the second, Q
γ
−, whose domain is obtained from D

(
Q

γ
+

)
through the unitary

transformation eiπσ3/4,

D(Q
γ
−) = {

� : e−iπσ3/4� ∈ D
(
Q

γ
+

)} = eiπσ3/4
(
D
(
Q

γ
+

))
. (5.1)

Consequently, Q
γ
− is an equivalent representation of the self-adjoint supercharge Q

γ
+ , sharing

both operators the same spectrum.
Similarly, its square (Q

γ
−)2, defined on the dense subspace (see footnote 1)

D((Q
γ
−)2) = {� ∈ D(Q

γ
−) : Q

γ
−� ∈ D(Q

γ
−)} = eiπσ3/4 (D(Hγ )) , (5.2)

is an equivalent representation of the self-adjoint extension Hγ = (
Q

γ
+

)2
of the Hamiltonian

H, initially defined on C∞
0 (R+\{0}) as in equation (2.10).

These equivalent representations of the Hamiltonian coincide only if the domain D
(
Q

γ
+

)
is left invariant by the unitary transformation eiπσ3/4, and this occurs only for the particular
self-adjoint extensions corresponding to γ = 0 and γ = π/2 (extensions for which states can
be chosen to be bosons or fermions), as can easily be seen from equation (4.13).

Consequently, the operator compositions(
Q

γ
+

)2
, (Q

γ
−)2, Q

γ
+Q

γ
− and Q

γ
−Q

γ
+ (5.3)

make sense in the same (dense) domain D(Hγ ) only for γ = 0, π/2, values of the parameter
characterizing self-adjoint extensions for which the N = 2 SUSY algebra is realized,{

Q
γ
+ ,Q

γ
−
} = 0, Hγ = (

Q
γ
+

)2 = (
Q

γ
−
)2

. (5.4)

For other values of the parameter γ , D
(
Q

γ
+

)
is not left invariant by eiπσ3/4, and there

is no dense domain in the Hilbert space where the self-adjoint operator compositions in
equation (5.3) could be defined.

Therefore, for γ �= 0, π/2 only one self-adjoint supercharge can be defined in the domain
of the Hamiltonian, and the SUSY algebra reduces to the N = 1 case,

Hγ = (
Q

γ
+

)2
(5.5)

(or, equivalently, (Q
γ
−)2).

At this point, it is worthwhile remarking that the double degeneracy of the non-vanishing
eigenvalues of Hγ with γ = 0, π/2 is a consequence of the existence of a second supercharge.
Indeed, if

Q
γ
+�λ = λ�λ, (5.6)

with �λ ∈ D(Hγ ) and λ �= 0, then equations (5.4) imply that

Q
γ
+

(
Q

γ
−�λ

) = −Q
γ
−
(
Q

γ
+�λ

) = −λ
(
Q

γ
−�λ

)
. (5.7)

Then, Qγ
−�λ

(∈D
(
Q

γ
−
) ≡ D

(
Q

γ
+

))
is a linearly independent eigenvector of Q

γ
+ corresponding

to the eigenvalue −λ, since Q
γ
−�λ ⊥ �λ and

‖Qγ
−�λ‖2 = (�λ, (Q

γ
−)2�λ) = (�λ,H

γ �λ) = λ2‖�λ‖2 �= 0. (5.8)

In conclusion, we see that for a general self-adjoint extension of the supercharge Q
γ
+ (and

the corresponding extension of the Hamiltonian, Hγ ), the conditions the functions contained
in D(Hγ ) satisfy near the origin prevent the N = 2 SUSY, loosing one supercharge. Then,
only the N = 1 SUSY algebra is realized, giving rise to a non-symmetric (and non-degenerate)
spectrum for the remaining supercharge, and a non-degenerate spectrum for the Hamiltonian.
The remaining N = 1 SUSY is spontaneously broken since there are no zero modes.
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The only exceptions are those self-adjoint extensions corresponding to γ = 0 and
γ = π/2, for which the N = 2 SUSY algebra can be realized. In these two cases the
supercharges have a common symmetric (non-degenerate) spectrum and the excited states of
the Hamiltonian are doubly degenerate.

For γ = 0, the (non-degenerate) ground state of H 0 has a vanishing energy and the SUSY
is manifest, while for γ = π/2 the (doubly degenerate) ground state of Hπ/2 has positive
energy and the SUSY is spontaneously broken.

It is also worthwhile pointing out that N = 2 SUSY can be realized only when the
supercharge domain D

(
Q

γ
+

)
is scale invariant. Indeed, consider a function �(x) ∈ D

(
Q

γ
+

)
;

under the scaling isometry

Ta�(x) := a1/2�(ax), (5.9)

with a > 0, the limit on the left-hand side of equation (4.12) becomes

lim
x→0+

x−g(Ta�)1(x)

xg(Ta�)2(x)
= lim

x→0+

x−ga1/2φ1(ax)

xga1/2φ2(ax)

= a2g lim
y→0+

y−gφ1(y)

ygφ2(y)
= −

√
π

2

a2g cot(γ )


(1 − g)



(

1
2 − g

)


(

1
2 + g

) , (5.10)

where equation (4.13) has been used in the last step. This shows that Ta�(x) belongs to the
domain of the self-adjoint extension Q

γa

+ characterized by the parameter γa satisfying

cot(γa) = a2g cot(γ ). (5.11)

Obviously, γa = γ,∀a > 0, only for γ = 0, π/2. For other values of γ the conditions the
functions in D

(
Q

γ
+

)
satisfy near the origin are not scale invariant.

Finally let us stress that, as remarked in the introduction, when the formal expression of
the Hamiltonian as a differential operator is not essentially self-adjoint, additional information
is needed to identify the self-adjoint extension which correctly describes the properties of the
physical system.

For the particular case under consideration we have seen that, even though we have
started from the formal N = 2 SUSY algebra of equations (2.1), (2.2), (2.3), (2.6) and (2.7),
we find a whole family of self-adjoint extensions offering the possibility of having not only
spontaneously broken SUSY, but also a non-degenerate Hamiltonian spectrum.
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Appendix A. Closure of Q+

In this section we will justify to disregard the contributions of the functions in D(Q+) to the
x → 0+ limit of the right-hand side of equation (4.8). In fact, we will show that, near the
origin, �0(x) ∈ D(Q+) behaves as in equation (4.10), for every |g| < 1/2.

Since the graph of Q+ is contained in the graph of Q
†
+, which is a closed set [19], it is

sufficient to determine the closure of the former. In doing so, we must consider those Cauchy
sequences {

�n =
(

ψ1,n

ψ2,n

)}
n∈N

⊂ D (Q+) := C∞
0 (R+\{0}) (A.1)

such that {Q+�n}n∈N are also Cauchy sequences.
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In this case, in particular, {ψ1,n}n∈N, {ψ2,n}n∈N, {Aψ1,n}n∈N and{Ã ψ2,n}n∈N are Cauchy
sequences in L2(0, 1), with A and Ã given in equations (2.6) and (2.7) respectively.

Moreover, since x is bounded in [0, 1], and the sum of fundamental sequences is also
fundamental, it follows that

{
ψ ′

1,n(x)− g

x
ψ1,n(x)

}
n∈N

, and
{
ψ ′

2,n(x)+ g

x
ψ2,n(x)

}
n∈N

are Cauchy
sequences in L2(0, 1).

On the other hand, we have x±g ∈ L2(0, 1) for any −1/2 < g < 1/2. Therefore,{
x−g

(
ψ ′

1,n(x) − g

x
ψ1,n(x)

)}
n∈N

= {(x−gψ1,n(x))′}n∈N (A.2)

and {
xg

(
ψ ′

2,n(x) +
g

x
ψ2,n(x)

)}
n∈N

= {(xgψ2,n(x))′}n∈N (A.3)

are Cauchy sequences in L1(0, 1).
Now, taking into account that these functions vanish identically in a neighbourhood of

the origin, one can see that {x−gψ1,n(x)}n∈N and {xgψ2,n(x)}n∈N converge uniformly in [0, 1].
Indeed, ∀x ∈ [0, 1] we have

|x−g[ψ1,n(x) − ψ1,m(x)]| =
∣∣∣∣∫ x

0
(y−g[ψ1,n(y) − ψ1,m(y)])′dy

∣∣∣∣
� ‖(y−gψ1,n(y))′ − (y−gψ1,m(y))′‖L1(0,1) →n,m→∞ 0, (A.4)

and similarly for the second sequence.
Consequently, there are two continuous functions, x−gφ0,1(x) and xgφ0,2(x), which are

the uniform limits in [0, 1]

x−gφ0,1(x) = lim
n→∞x−gψ1,n(x), xgφ0,2(x) = lim

n→∞xgψ2,n(x). (A.5)

In particular, we get

lim
x→0

x−gφ0,1(x) = 0, lim
x→0

xgφ0,2(x) = 0. (A.6)

Moreover, the limit of the sequence in L2(0, 1) is given by

lim
n→∞ �n = �0 =

(
φ0,1

φ0,2

)
. (A.7)

Indeed, taking into account that, for any ε > 0,

|x−g[ψ1,n(x) − φ0,1(x)]| < ε, ∀ x ∈ [0, 1], (A.8)

if n is sufficiently large, it follows that

‖ψ1,n − φ0,1‖2
L2(0,1) =

∫ 1

0
x2g|x−g(ψ1,n(x) − φ0,1(x))|2 < ε2

∥∥xg
∥∥2

L2(0,1)
, (A.9)

and similarly for the lower component.
Equations (A.7) and (A.6) prove our assertion in equation (4.10).
We will finally verify that the so-obtained function �0 belongs to D

(
Q

†
+

)
. Let ρ1(x) be

the limit in L1(0, 1) of the fundamental sequence given in equation (A.2),

ρ1(x) = lim
n→∞ (x−gψ1,n(x))′. (A.10)

Then, given ε > 0, and ∀ x ∈ [0, 1], we have∣∣∣∣x−gψ1,n(x) −
∫ x

0
ρ1(y) dy

∣∣∣∣ =
∣∣∣∣∫ x

0
[(y−gψ1,n(y))′ − ρ1(y)] dy

∣∣∣∣
� ‖(y−gψ1,n(y))′ − ρ1(y)‖L1(0,1) < ε, (A.11)

if n is large enough.
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Since the uniform limit is unique, it follows from equations (A.5) and (A.11) that

φ0,1(x) = xg

∫ x

0
ρ1(y) dy, (A.12)

with ρ1 ∈ L1(0, 1). Therefore, φ0,1(x) is an absolutely continuous function for x > 0. A
similar conclusion is obtained for the lower component of �0.

Appendix B. Spectral functions associated with Qγ
+

B.1. The graded partition function

We will now consider the graded partition function [28–30] of Hγ , defined as

ZF
γ (T ) := Tr{(−1)F e−T Hγ } =

∑
λn

e−T λ2
n
(�n, (−1)F �n)

‖�n‖2
. (B.1)

Subtracting the contribution of a possible zero mode we can write

ẐF
γ (T ) :=

∑
λn �=0

e−T λ2
n

λn

(
Q

†
+�n, (−1)F �n

)
‖�n‖2

, (B.2)

where

(−1)F
(

φ1

φ2

)
=

(
φ1

−φ2

)
. (B.3)

Taking into account equation (3.8), and the fact that the eigenfunctions are real, it is
straightforward to get

ẐF
γ (T ) = −

∑
λn �=0

e−T λ2
n

√
2λn‖�n‖2

[φn,1(x)φn,2(x)]x=0+

= 1

2

∑
λn �=0



(

1
2 + g

)


(

1
2 − g

)
e−T λ2

n



(
1 − λ2

n

2

)


( 1−λ2

n

2 − g
)‖�n‖2

, (B.4)

where the behaviour of the functions in D (Hγ ) near the origin (see equation (4.11)) has been
taken into account in the last step.

We see that ZF
γ (T ) depends on γ though the spectrum of Q

γ
+ and, in general, also depends

on T. But it can be shown that ZF
γ (T ) is independent of T, and coincides with the Witten index,

for the particular values γ = 0, π/2.
Indeed, for the eigenvalues of Q

γ=π/2
+ , given in equation (4.23), each term in the series

on the right-hand side of equation (B.4) vanishes because of the second 
-function in the
denominator. So, since there are no zero modes, we get

ZF
γ=π/2(T ) ≡ 0 = �γ=π/2. (B.5)

On the other hand, for the eigenvalues of Q
γ=0
+ given in equation (4.22), every term in the

series in equation (B.4) vanishes because of the first 
-function in the denominator. In this
case, we get from the zero mode in equation (3.24)

ZF
γ=0(T ) = (�0, (−1)F �0)

‖�0‖2
= 1 = �γ=0. (B.6)

For other values of γ , ZF
γ (T ) vanishes exponentially with T (since there are no zero

modes), reproducing the Witten index in the T → ∞ limit.
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B.2. The spectral asymmetry

The spectrum behaviour for a general self-adjoint extension Q
γ
+ , as shown in figure 1, can be

characterized by the spectral asymmetry [31]

η(s) :=
∑

λ±,n �=0

sign(λ±,n)|λ±,n|−s . (B.7)

Since |λ±,n| ∼ √
n (see equation (4.18)), equation (B.7) defines an analytic function on the

open half-plane Re(s) > 2.
For the particular values β = −∞ and β = 0, it is evident from equations (4.16) and

(4.17) that η(s) identically vanishes for any g ∈ (−1/2, 1/2).
The spectral asymmetry can also be expressed as

η(s) = ζ+(s, β) − eiπsζ−(s, β), (B.8)

where

ζ+(s, β) :=
∑

λ+,n>0

λ−s
+,n, ζ−(s, β) :=

∑
λ−,n<0

λ−s
−,n. (B.9)

From equation (4.14), it can be seen that (for finite β(γ )) the eigenvalues of Q
γ
+ are the

zeros of the analytic entire function

F(λ, β) := λ



(
α − λ2

2

) − β



(− λ2

2

) , (B.10)

where α = 1
2 − g. Since these zeros are real and simple, we have the following integral

representation:

ζ+(s, β) = 1

2π i

∮
C+

λ−s F ′(λ, β)

F (λ, β)
dλ

= − 1

2π
eiπs/2

∫ ∞+i0

−∞+i0
µ−s F ′(e−iπ/2µ, β)

F (e−iπ/2µ, β)
dµ, (B.11)

where C+ encloses counterclockwise the positive zeros of Q
γ
+ .

Moreover, since F(eiπ |λ|, β) = eiπF (|λ|, e−iπβ), it follows that the negative zeros of
F(λ, β) are minus the positive zeros of F(λ, e−iπβ). Consequently,

ζ−(s, β) = e−iπsζ+(s, e−iπβ). (B.12)

Taking into account that

F ′(−iµ, β)

F (−iµ, β)
= 1 + µ2[ψ(µ2/2) − ψ(α + µ2/2)]

−iµ
[
1 − iβ


(α+µ2/2)
µ
(µ2/2)

]
− iµψ(µ2/2) = i[�1(µ) + �2(µ, β)] + O(µ−3), (B.13)

with

�1(µ) = −µ log

(
µ2

2

)
+

1

µ
, �2(µ, β) = 2g

µ
[
1 − i β

µ

(
µ2

2

)−g+1/2] , (B.14)

we see the right-hand side of equation (B.11) converges to an analytic function on the open
half-plane Re(s) > 2, region from which it can be meromorphycally extended to the left.

For example, taking into account that

F ′(−i eiπµ, β)

F (−i eiπµ, β)
= eiπ F ′(−iµ, e−iπβ)

F (−iµ, e−iπβ)
, (B.15)
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we can write

−2πζ+(s, β) = −2 sin
(πs

2

) ∫ ∞

1
µ−s�1(µ) dµ

+ i
∫ ∞

1
µ−s

{
eiπs/2�2(µ, β) − e−iπs/2�2(µ, e−iπβ)

}
dµ

+ eiπs/2
∫ ∞

1
µ−s

{
F ′(−iµ, β)

F (−iµ, β)
− i[�1(µ) + �2(µ, β)]

}
dµ

− e−iπs/2
∫ ∞

1
µ−s

{
F ′(−iµ, e−iπβ)

F (−iµ, e−iπβ)
i[�1(µ) + �2(µ, e−iπβ)]

}
dµ

+ eiπs/2
∫ 1

eiπ
µ−s F ′(−iµ, β)

F (−iµ, β)
dµ, (B.16)

where the first integral on the right-hand side converges for Re(s) > 2, the second one
converges for Re(s) > 0, the third and fourth ones exist for Re(s) > −2, and the fifth one
(evaluated on a curve going from −1 to 1 on the upper open half-plane, near the real axis) is
an entire function of s.

For the analytic extension of the first term on the right-hand side of equation (B.16) we
have

I1(s) = −2 sin
(πs

2

) ∫ ∞

1
µ−s�1(µ) dµ

= −2 sin(πs/2)

[
1

s
− 2

(s − 2)2 +
log(2)

s − 2

]
, (B.17)

and for the second one (calling x = µ−2g)

I2(s) = Re

{
2i eiπs/2

∫ ∞

1
µ−s�2(µ, β) dµ

}
= −Re

{
2i eiπs/2 lim

µ→∞

∫ µ−2g

1

x
s

2g
−1 dx

1 − i 2g− 1
2 βx

}
, (B.18)

for g �= 0, while I2(s) ≡ 0 for g = 0.
According to the sign of g, we straightforwardly get:

• For g > 0,

I2(s) = −4g

s
sin

(πs

2

)
− 2g+3/2gβ

s + 2g
cos

(πs

2

)
+ 22gβ2

∫ 1

0
x

s
2g

+1 sin
(

πs
2

)
+ 2g−1/2βx cos

(
πs
2

)
1 + 22g−1β2x2

dx, (B.19)

where the last integral converges for s > −4g. Note the pole2 at s = −2g.

2 This singularity implies that the ζ -function of Q
γ
+ ,

ζ(s, β) ≡ ζ+(s, β) + ζ−(s, β) = ζ+(s, β) + e−iπsζ+(s, e−iπβ) (B.20)

presents a simple pole at s = −2g,

ζ(s, β) = 2g+3/2(e2iπg − 1)gβ cos(gπ)

s + 2g
+ O(s + 2g)0. (B.21)

The residue, which depends on the self-adjoint extension through β, vanishes only for the g = 0 case, and for β = 0
(with any value of g ∈ (−1/2, 1/2)). This is another example of a singular potential leading to self-adjoint extensions
with associated ζ -functions presenting poles at positions which do not depend only on the order of the differential
operator and the dimension of the manifold, as is the general rule valid for the case of smooth coefficients (see
[32–34]).
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• For g < 0 and β �= 0,

I2(s) = − 2−g+5/2g

β(s − 2g)
cos

(πs

2

)
+
∫ ∞

1
x

s
2g

−2 2βx sin
(

πs
2

) − 2−g+3/2 cos
(

πs
2

)
β[1 + 22g−1β2x2]

dx,

(B.22)

where the last integral converges for s > 4g = −4|g|. Note the pole at s = 2g = −|2g|.
Note that ζ+(s, β) is analytic in a neighbourhood of the origin. From equations (B.16),

(B.17), (B.19) and (B.22) it is easy to get the first term of the Taylor expansion of ζ+(s, β)

around s = 0,

−2πζ+(s ≈ 0, β) = −π +

{−2πg, g > 0
0, g � 0

}
+
∫ ∞

1

[
F ′(−iµ, β)

F (−iµ, β)
− F ′(−iµ, e−iπβ)

F (−iµ, e−iπβ)

]
dµ

+ i[log F(−i, β) − log F(i, β)] + O(s), (B.23)

where the remaining integral can be evaluated taking into account that



(

1
2 − g + µ2

2

)
µ


(
µ2

2

) = 2g−1/2µ−2g{1 + O(µ−2)}. (B.24)

We get

ζ+(s = 0, β) =


g, 0 < g < 1/2,

− 1

π
arctan

(
β√
2

)
, g = 0,

−1

2
sign(β), −1/2 < g < 0.

(B.25)

Therefore, from equations (B.8), (B.12) and (B.25), it is straightforward to get for the
spectral asymmetry of Q

γ
+ at s = 0

η(s = 0) = [ζ+(s, β) − ζ+(s, e−iπβ)]|s=0

=


0, 0 < g < 1/2,∀β,

− 2

π
arctan

(
β√
2

)
, g = 0, ∀β ∈ R

+,

−sign(β), −1/2 < g < 0, ∀β �= 0,−∞.

(B.26)
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[22] Cheon T, Fülöp T and Tsutsui I 2001 Ann. Phys. 294 1
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